

# TORLON® 7130 PAI

## 30% Carbon Fiber Reinforced

#### **DESCRIPTION**

**TORLON® 7130** is recognized as the strongest and stiffest of polyamide-imide grades. Torlon 7130 also has the lowest CLTE, closely matching both aluminum and many advanced composites. The high surface hardness, resulting from the carbon fiber, results in good wear resistance in well lubricated service.

#### **TYPICAL APPLICATIONS:**

- Vacuum pump vanes
- Labyrinth seals

- Mechanical stand-offs and linkages
- Impellers, wear rings and guides

### **EXTRUDED SHAPES PROPERTIES**

| PHYSICAL PROPERTIES                     | METRIC                                 | IMPERIAL                               | METHODS                       |
|-----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------|
| Specific Gravity                        | 1.47 g/cc                              | 0.054 lb/in <sup>3</sup>               | ASTM D792                     |
| Water Absorption                        | 0.3%                                   | 0.3%                                   | Immersion, 24hr; ASTM D570(2) |
| Water Absorption at Saturation          | 1.5%                                   | 1.5%                                   | Immersion; ASTM D570(2)       |
| MECHANICAL PROPERTIES <sup>1</sup>      |                                        |                                        |                               |
| Hardness, Rockwell M                    |                                        | M125                                   | ASTM D785                     |
| Hardness, Rockwell                      |                                        | E91                                    | ASTM D785                     |
| Hardness, Shore D                       |                                        | 88                                     | ASTM D2240                    |
| Tensile Strength, Ultimate              | 152 MPa                                | 22,000 PSI                             | ASTM D638                     |
| Elongation at Break                     | 3%                                     | 3%                                     | ASTM D638                     |
| Tensile Modulus                         | 8,275 MPa                              | 1,200,000 PSI                          | ASTM D638                     |
| Flexural Modulus                        | 6,900 MPa                              | 1,000,000 PSI                          | ASTM D790                     |
| Flexural Yield Strength                 | 220 MPa                                | 32,000 PSI                             | ASTM D790                     |
| Compressive Strength                    | 255 MPa                                | 37,000 PSI                             | 10% Def.; ASTM D695           |
| Compressive Modulus                     | 7,240 MPa                              | 1,050,000 PSI                          | ASTM D695                     |
| Izod Impact (notched)                   | 42 J/m                                 | 0.9 ft-lbs/in                          | ASTM D256 Type A              |
| THERMAL PROPERTIES                      |                                        |                                        |                               |
| Melt Point/T <sub>g</sub>               | 275° C                                 | 527° F                                 | ASTM D3418                    |
| Heat Deflection Temperature (264 PSI)   | 278° C                                 | 532° F                                 | ASTM TMA                      |
| Coefficient of Linear Thermal Expansion | 0.9 x 10 <sup>-5</sup> C <sup>-1</sup> | 0.5 x 10 <sup>-5</sup> F <sup>-1</sup> | E831 TMA                      |

<sup>1</sup>The mechanical properties of extruded shapes may differ from the values published by resin producers. Published resin data is always generated from test specimens injection molded under optimum conditions. Drake's extruded shape values are generated using specimens machined from actual shapes and may reflect surface imperfections from machining, enhanced crystallinity as a result of processing, and fiber alignment inherent in all reinforced plastic shapes, regardless of process. For additional information on the effects of fiber alignment, see Drake Fiber Orientation Diagram, available on the Resource page of our website.